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We derive asymptotic series for the expansion coefficients of a function in terms 
of the Pagani functions, which occur in the boundary layer solutions of the 
Klein-Kramers equation. The results enable us to determine the density profile 
in the stationary solution of this equation near an absorbing wall from the 
numerically determined velocity distribution at the wall, with an accuracy of 
about 2%. We also obtain information about the analytic behavior of the 
density profile: this profile increases near the wall with the square root of the 
distance to the wall. Finally, the asymptotic analysis leads to an understanding 
of the slow convergence of variational approximations to the solution of the 
absorbing-wall problem and of the exponents that occur when one studies the 
variational approximations to various quantities of interest as functions of the 
number of terms in the variational ansatz. This is used to obtain a better 
variational estimate for the density at the wall. 

KEY WORDS: Boundary layer; Brownian motion; Milne problem; asymptotic 
expansions. 

1. INTRODUCTION AND SURVEY 

The kinetic boundary layer problem for the Klein-Kramers equation near a 
plane absorbing boundary, posed a long time ago by Wang and 
Uhlenbeck, (~) has received a considerable amount of attention in recent 
years. The history and background of the problem were reviewed extensively 
in a recent paper by Selinger and Titulaer, (2) so we shall restate it only 
briefly here. In dimensionless units the stationary Klein-Kramers equation (3) 
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for the distribution function of velocity u and position x of a Brownian 
particle in one dimension reads 

u P(u,x)= u P(u,x) (1.1) 

The equation has two easily determined solutions of Chapman-Enskog 
type, the equilibrium solution 

qt0(u, x) = ~0(u) = (2~)-'/2 exp(_luZ) (1.2) 

and a current-carrying solution 

~u;(u, x)  = (xu -1 - 1) O~(u) (1.3a) 
with 

O'o(U ) = uOo(u ) (1.3b) 

The problem posed by Wang and Uhlenbeck was to construct a solution 
PM(u, x) such that 

p M ( u , x ) ~  qS6(U,X) +XM~o(U,X) for x ~  oo (1.4a) 

with the boundary condition for an absorbing wall 

e ' ( u ,  0) = 0 for u > 0 (1.4b) 

and to determine the parameter xM, the Milne extrapolation length. The 
solution (1.4) is called the Milne solution of (1.1). 

Simple approximate Milne solutions were given by Harris (n) and by 
Razi Naqvi et al. (5) A more systematic approach (7) starts from the obser- 
vation by Pagani (6) that (1.1) has the additional solutions 

~• X) = O• exp(Tna/2x) (n = 1, 2, 3,...) (1.5) 

with known functions r177 given explicitly in Section 2. Moreover, Pagani 
showed that the r177 are orthogonal with respect to the indefinite scalar 
product 

(f ,  g) = du u exp(�89 g(u) (t.6) 
- -  CD 

and, together with r and r complete on -oo  < u < m. It was then 
conjectured by Burschka and Titulaer (7) that the Wang-Uhlenbeck problem 
has a solution of the type 

(1.7) 
r - r 3  

n 1 
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This conjecture was later proved by Beals and Protopopescu. (8) The coef- 
ficients d~ ,  are given by fo 

d+n = - du u exp(�89 O) ~,+n(u, x) (1.8) 
- - 0 0  

Since this expression contains the unknown function PM(u, 0), it cannot be 
used to determine the d~ ,  directly. This was done in Ref. 7 by means of a 
variational procedure starting with a finite approximation to the infinite sum 
in (1.7). However, this scheme exhibited very slow convergence, and it was 
found necessary to combine it with an empirical extrapolation procedure in 
order to find reliable results for x M and other quantities of interest. For some 
quantities, such as the density profile 

nM(x) = du PM(u, x) (1.9) 
- - o 0  

a reliable extrapolation was not feasible. 
To circumvent some of these difficulties, the function P~t(u, 0) was 

determined numerically in Ref. 2. This allows a direct determination of x M ; 
moreover, the d~ , ,  and with them the full solution (1.7), can be determined 
in principle via (1.8). However, the series in (1.7) turns out to be slowly 
converging and the numerical accuracy in P~t(u, 0) does not suffice to 
evaluate (1.8) reliably for high n, as is argued more fully in Section 3. 

In the present paper we treat this remaining difficulty with the solution 
procedure of Ref. 2, further denoted by I, by providing an asymptotic 
expansion of d~ ,  for large n. Such an expansion was provided before by 
Mayya and Sahni. (ga) (For a criticism of Ref. 9a, see a work by 
Protopopescu et a/. (9b)) These authors used the expansion in combination 
with an ad hoe ansatz for PM(u, 0); hence their results do not yield a 
qualitative improvement over those of Refs. 4 and 5. However their work 
yields one new prediction: the density profile n~t(x) is found to have an 
infinite derivative at x = 0; for small x it has the form a + bx 1/3. 

In Section 2 of this paper we describe our technique for deriving an 
asymptotic series for d M which is somewhat more general and easier to use + n ,  

than that of Ref. 9a. This technique is then used in Section 3 to determine the 
density profile n~t(x) from the numerically determined PM(u, 0) found in I. 
The result depends critically on the behavior of PM(u, 0) near u = 0, which 
could not be determined unambiguously from the numerical results in I. In 
Section 4 we show that this ambiguity can be resolved by exploiting the 
requirement that the expansion coefficients 

d~ n = f du u exp(lu 2) P~t(u, 0) ql n(U ) (1.10) 



592 Titulaer 

vanish identically. We show that this can occur only when 

pM(u,O)~--~cstu 1/2+3k for u ~ 0  (k---0,1,2,. . .)  (1.11) 

A glance at the numerical results shows that only k = 0 yields acceptable 
agreement. This is shown to lead to a density profile 

n ~ ( x ) ~ n ~ ( O ) + c s t x  1/2 for x ~ 0  (1.12) 

exhibiting the infinite tangent predicted Mayya and Sahni, but with a 
different power of x. 

In Section 5 we exploit our asymptotic results to shed some light on the 
convergence properties of variational solutions of the type used in Ref. 7. We 
explain the inverse powers of N (the number of terms in the variational 
ansatz) with which various physical quantities of interest approach their 
correct value in the limit N ~  ~ .  We also indicate how the results of this 
paper can be used to improve and simplify calculations as performed in 
Ref. 7. 

Our aim throughout this paper is to develop asymptotic techniques as a 
practical aid in the study of kinetic boundary layers. Some steps in our 
derivations are not fully rigorous; there we give plausibility arguments and 
use a posteriori consistency checks and comparisons with numerical data to 
support our method. Also, for clarity, we confine ourselves in the main part 
of the paper to a discussion of the Milne solution. Some remarks on the 
applicability of our techniques to other kinetic boundary layer problems are 
given in the concluding section. 

2. ASYMPTOTIC SERIES FOR THE PAGANI 
EXPANSION COEFFICIENTS 

The Pagani eigenfunctions introduced in (1,5) are given by {6) 

O • = (n!)-1/2(Srrn)-l/4(Ze) -n/2 exp[-�89 q: nl/2) 2] H , [2 - l / 2 (u  T- 2nl/2)] 

= (n!)-  1/2(87rn)- 1 / 4 2  - n/2 exp [-- �88 2])exp [-- �88 (u 7= 2n 1/2)2 ] 

X H,[2-1/2(u  7: 2nl/2)] (2.1) 

For large n and not too large u these functions can be approximated by an 
asymptotic expression due to Olver, (1~ a variant of the Plancherel-Rotach 
formula (Ref. 11; this book uses differently defined Airy functions). If we 
define 

= vx, v = (2n + 1) 1/2 (2.2) 
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then 01vet's asymptotic formula reads 

exp(-~2) Hn(~)  )1,4 
(27g)l12e-(l14)v21y(3v2-1)/6 {A/(p4/3~) + e(x)} (2.3a) 

with Ai(z) the Airy function, ~ given by 

~=  21/3 [(x - 1) + @0(x -- 1) 2 -- 3~-v5 (x -- i) 3 +"  "'] (2.3b) 

and e(x) of order n-~ times the amplitude of the Airy function. Using (2.3b) 
and (1 + n-~)~n~ e ~ we find to leading order 

exp(-a~ 2) H,(~) ~ (2701/2e-(~/2)"(2n)('/2)"+ 1/6 ai[v4/321/3(x _ 1)] (2.4) 

Substitution in (2.l), use of Stirling's formula, replacement of 
(2n + 1) 1 /2-  (2n) ~/z by 2-3/2n -~/2, and use of H , ( - r  ( -1)"H,(~)  yields 

~)o,(u) ~ (-a)"2-1/2n-1/3 exp( - lu  2) Ai(-gnW6u - -  �89 -1/3) (2.5) 

with a the sign of the index +n. 
Let us now consider the expansion coefficients d,n[f ] in terms of the 

Pagani eigenfunctions of a function f (u)  = ] ' ( -u )  exp(-  �89 2) that is nonzero 
only for negative u. Using the expansion formula (I.2.9) we find 

0 

d o , [ f ] = a f  d u u f ( - u )  Oo,(u ) (2.6) 
--00 

To obtain an asymptotic series for these coefficients we make use of a 
formula due to Bleistein and Handelsman ~12) for integral transforms of the 
type 

H[ g; 2] = f :  dt h(2t) g(t) (2.7) 

When g(t) has an expansion near t = 0 of the type 

g(t)= ~. gm tam (2.8) 
r n = l  

with a m an increasing sequence of positive numbers, then asymptotically for 
large 2 

n [ g ; 2 ] ~  ~ )~-l-amgmM[h;1 +am] (2.9) 
m=O 

822/37/5 6 7 
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with M[h; z] the Mellin transform of h(t), i.e., the analytic continuation of 

ffI[h, z] = l~  dt h(t)t Z-I (2.10) 

In view of the oscillating character of the r for large positive au 
and the rapid decrease for large negative au we may expect that the 
dominant contribution to the integrals (2.6) comes from the region where 
(2.5) is valid. When we substitute (2.5) in (2.6) and expand the Airy 

_ ! n  - 1/3 function in a Taylor series with respect to the argument shift 2 , we 
have written (2.5) as a sum of contributions of type (2.7). The Mellin 
transforms of Ai(t) and A--~(t)=-Ai(-t) are given by (12) 

M [ A i ;  z] = (2zc) -1 3 2 z / 3 - 7 / 6 f f ( ~ - ) F ( f ~ )  (2.1 la) 

and 

M[Ai; a] = 2 sin -~  + M(Ai; z) 

and those of their derivatives follow from 

(2.1 lb) 

M[h'; z] = - ( z  - 1)M[h; z - 1] (2.12) 

We note in passing that the derivatives of Ai(t) beyond the second one do 
not have Mellin transforms in the usual sense; however, we shall not use 
such high terms in the asymptotic series anyhow, for reasons to be explained 
presently. 

The asymptotic series we obtain in this way for the expansion coef- 
ficients (2.6) are 

d+n[f] ~ (__l)n+ 12-1/Z ~. n-2/3-(l/6)am gm{m[Ai; 2 + am] 
m = l  

-kn 1/3(1 +am)M[Ai;1 +am] +-..} (2.13a) 

and 

d_,[f] ~ 2 1/2 ~ n 2/3-(1/6)amgm{M[A~; 2 + am] 

--1n-l/3(1 + am) M[Ai;1 +am]+'"}  

where the gm are the expansion coefficients according to (2.8) of 

(2.13b) 

g(u) =~ f(u) exp(--�88 2) (2.13c) 



Density Profile for the Klein-Kramers Equation Near an Absorbing Wall 595 

The terms in (2.13a, b) coresponding to second derivatives of the Airy 
function are of order n -2/3 relative to the leading term, and thus of the same 
order as terms beyond the first one in (2.3b), that are neglected in passing 
from (2.3a) to (2.5). Thus only terms in (2.13) of order smaller than n -2/3 
relative to the leading one are meaningful; the next corrections can be 
worked out, however. Starting from the relative order n - i  we would need as 
yet unknown corrections to the asymptotic expression (2.3a), as well as third 
derivatives of the Airy function, for which (2.9) cannot be used without 
closer scrutiny. Generalizations to functions not confined to the negative 
half-axis are straightforward, but not needed for our analysis. 

3. EXPANSION OF THE NUMERICALLY DETERMINED 
MILNE SOLUTION; DENSITY PROFILES 

In I, we numerically determined the velocity distribution PM(u, 0) of 
particles at an absorbing wall for a system of Brownian particles that are 
supplied at a constant rate from the far interior, the so-called Milne solution 
of the Klein-Kramers equation discussed already in Section 1. To obtain the 
full solution PM(U,X) we must expand the boundary layer part of the 
function P~t(u, 0) in terms of the Pagani eigenfunctions and provide each 
term in the expansion with a factor exp(-xn  1/2). 

The first few expansion coefficients d+~[P M] - M = d+n can be determined 
from the numerically determined PM(u, 0), further denoted by P~(u), either 
via direct numerical integration or analytically via some parametrization. 
However, after the first few terms the numerical integration becomes 
unreliable, as the 0+,(u) vary appreciably over the sampling intervals used in 
constructing the numerical PM(U). Similarly, the analytical calculations 
rapidly increase in complexity as n increases. In principle there are three 
possible ways out: (i) truncation of the Pagani series, (ii) empirical 
extrapolation of the coefficients, (iii) replacement of the higher coefficients 
by an asymptotic expression. The first two alternatives were tried in I, 
Section 4, and will be briefly reviewed here; then we shall explore the third 
alternative. 

To assess the validity of the various procedures we concentrate on the 
density profile 

n (x) = clu PM(u, x) 
- - ( 3 0  

0(3 

= x + xM + ~ n =1 P~ exp (--xn 1/2) (3.1 a) 

with 

=d+. duO+.(u) (3.1b) 
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As we saw in I the integral in (3.1b) is given by 

f du #+~(u) = (--1)"(2n)-1/2[1 - (24n) -~ + . . .  ] (3.2) 

If we replace 4+n(u) by its asymptotic form (2.5), which is already quite 
good for n = 1, we find after a straightforward rescaling 

d~n~ (-1)n+12-1/2n-2/3 dtt Ai[ t -  in1 -1/3] 

X P M ( - - t ' I  - t/6 t) exp(+ �88 - 1/3t2) (3.3) 

Since the integral is positive definite, all terms in the series in (3.1) are 
negative and any truncation yields an upper bound. Moreover, since both 
PM(u) exp(�88 z) and t Ai(t) are functions with a single maximum, the integral 
also shows a single maximum as a function of n, situated roughly where the 
two maxima coincide. We found this maximum in n2/Zd~, at n = 10. Thus a 
lower bound for n(x) can be found by replacing the integral in (3.3) for all 

'~ This n > nma x (nma x/> 10) by the corresponding quantity found from d+,ma x. 
was done in I for nma x = 12. The density profile can then be calculated using 
a technique to be explained presently. We found that the upper and lower 
bound differ appreciably; moreover the values for nM(0) obtained from the 
approximations to (3.1) agree rather poorly with the value found directly by 
integrating PM (u ). 

To obtain better agreement we now attempt to exploit the asymptotic 
series expansions developed in Section 2. To apply them we must use a 
parametrization of PM(-u). If  we use the analytic parametrization (I.4.1) we 
obtain for the function g(u) in (2.13c) 

g(u) = 0.1749 + 1.1286u - 0.5838u 2 - 0.1083u 3 + 0.1201u 4 + ..- (3.4) 

This implies for the expansion coefficients in (3.1) the asymptotic expression 
/~ given by 

~ ~ 0.0226n- 7/6 + 0.2003n-8/6 _ 0.1800n -9/6 + 0.0619n - 10/6 

+ 0.0916n -11/6 + ... (3.5) 

where the last term includes a contribution -0 .0088 from correction terms 
not included in (2.5) and (2.13a). 

In Table I we give the expressions for ~ ,  1 ~< n ~< 12, obtained by trun- 
cating the series after the third and fourth term; we also give the exact 
p~ calculated analytically from the parametrization (I.4.1), which 
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Table I. The Expansion Coefficients pMas Determined (a) from the Numerical Solution 
in I with the Parametrization (I.4.1); (b, c) from the Asymptotic Series (3.5) Truncated 

after Three and After Four Terms; (d) form (4.3) Truncated after the First Term 

n (a) (b) (c) (d) 

1 0.0980 0.0429 0.1048 0.1216 
2 0.0461 0.0259 0.0454 0.0511 
3 0.0293 0.0179 0.0278 0.0308 
4 0.0211 0.0135 0.0197 0.0215 
5 0.0163 0.0108 0.0150 0.0163 
6 0.0133 0.0089 0.0120 0.0129 
7 0.0111 0.0076 0.0100 0.0107 
8 0.0095 0.0066 0.0085 0.0090 
9 0.0083 0.0058 0.0074 0.0078 

10 0.0073 0.0051 0.0065 0.0068 
11 0.0066 0.0046 0.0058 0.0061 
12 0.0059 0.0042 0.0052 0.0054 

corresponds to (3.4). The series truncated after the fourth term is closest to 
the exact values; inclusion of  the fifth term (not shown) leads to a much 
worse approximation for small n and a slightly better one for the last few p~ 
considered. This is a general feature of  asymptotic series: the best approx- 
imation is usually obtained by truncation after the smallest term. 

The density profile corresponding to the coefficients 

is given by 

with 

P 

Z r,n (3.6a) 
i = 1  

P 

ff~(x) = x + x~ + E riZ(ai ;x )  (3.6b) 
i = 1  

Z(a,x)= ~ n-~" exp(-xn l/z) ( a >  1) (3.6c) 
n = l  

The function Z(a, x) for large x is readily calculated from the series (3.6c); it 
can then be continued to smaller x using the generalization of  (I.4.7) 

Z(a,x)= ~_,~ (--1)"+ln-"exp(--xnl/Z)+ 21-=Z(a, 21/2x) (3.7) 
n ~ l  

For small x, Z(a, x) approaches the Riemann ( function ~(a). It is clear from 
(3.7) that the first correction term must be proportional to x 2~-~), since the 
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alternating series can be bounded by aZ(a + 1, x). Using the techniques of 
Mayya and Sahni (9) and the series expansion of the incomplete F function (13) 
we find 

Z(a,x)=~(a)--(a--1)-lxZ('~-l)F(3--2a)+O(x) for 1 < a <  1.5 (3.8) 

For a > 1.5, Z(a, x) decreases no faster than linearly, as one sees from the 
relation 

d Z(a ,x )=-Z(a  1 x) (3.9) 
dx - - 2  ' 

The possibly anomalous case a = 1.5 is not needed in this section or in the 
remainder of the paper. 

Our best estimate for riM(x) using the asymptotic series (3.5) is given by 

12 

n~(x) = rT~(x) + ~ '  {p~ -/Y~} exp(-xn I/2) (3.10) 
n = l  

This function is given for a few values of x in the first row of Table II. Its 
behavior for small x is given by 

nMa(X) = 0.918 + 0.184X 1/3 -I- 1.610X 2/3 + O(X) (3.11) 

Since the second term in (3.10) is analytic in x, the second and third term in 
(3.11) come from the contribution rT~(x). The value for nM(0) found directly 
in I is nM(0)= 0.942. The remaining discrepancy is due to the intrinsic 
limitations of the asymptotic series (3.5), but also to possible deficiencies of 
the parametrization (I.4.1). The latter point will be discussed in the following 
section. 

Table II. The Boundary Layer Part of the Density Profile [nM(x) - x -  XMI, as 
Calculated (a) from (3 .10)  with a Four-Term Approximation to r~M(x); (b) from (4.4). For 

x = 0 W e  Found in I 0 . 5 1 2  + 0 .009 .  

x 4 1 2 - 2  2 - 4  2 -6 2 8 2-1o 0 

(a) 0.002 0.061 0.207 0 . 3 4 2  0 . 4 3 0  0 . 4 7 9  0 . 5 0 5  0.536 
(b) 0.002 0.061 0.206 0.341 0.427 0 . 4 7 6  0 . 5 0 2  0.528 
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4. A CONSISTENT PARAMETRIZATION OF THE 
MILNE SOLUTION 

The parametrization (I.4.1) was obtained as a best fit to the numerically 
obtained P~t(-u) over its entire range of values, assuming a form 
exp(-~u2) f (u)  with f ( u )  a polynomial of degree four. As we already noted 
in I, the data for PM(--U) near u = 0 might also be fitted by a n f ( u )  going to 
zero as some fractional power of u. To decide between the various fits we 
now use the requirement that all expansion coefficients dM, should vanish for 
the actual solution of the Milne problem. This implies in particular that in 
the asymptotic series (2.13b) the coefficient of each inverse power of n 
should vanish separately. For the leading term this implies, as is seen from 
(2.11b), that a I should equal �89 + 3k with integer k, hence that g(u) should 
behave like u 1/2+3~ for small u. A comparison with the numerical result 
shows that only k = 0 yields an acceptable fit. The next term with gl in curly 
brackets in (2.1b) is then nonzero, but it can be compensated for by the first 

~--- 1 term with g2, provided a s = ~ and g2 - 7  gl ,  as one sees using (2.11b). In a 
similar fashion the coefficient of u 9/2 in g(u) can be determined from the 
requirement that the coefficient of//-17/12 in the asymptotic series for d~ ,  
vanishes. However, the coefficient of u v/z, and more generally of u ~/2+3k, 
cannot be determined in this way. Later in this section we shall briefly 
discuss a systematic fitting procedure for PM(--U) based on these obser- 
vations. Unfortunately, this scheme turns out to be impracticable, for reasons 
to be discussed. 

However, the leading terms in the asymptotic series for dM+n involve 
only the behavior of PM(--U) for small u. In this region we must have, as we 
just saw, 

g(u) = a[u 1/2 - -  l u 5 / 2  ~- 0 ( / / 7 / 2 ) ]  (4.1a) 

o r  

PM(--U) = a[u 1/2 -- ~u5/2 + O(u7/:)] (4.1b) 

A fit of the constant a to the numerical data at low u yields 

a = 0.8425 + 0.0325 (4.2) 

The relatively low accuracy is caused by the rather high uncertainty of the 
data at low u. 

The fit (4.1) with a given by (4.2) yields expansion coefficients 
analogous to (3.5) given by 

,6,~ = 0.1216n-5/4 _~ O(n--7/4) (4.3) 
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the superscript c denotes the consistent parametrization (4.1). The first term 
in (4.3) is given in Table I; it yields quite good agreement with the directly 
dtermined M p , .  If (4.3) is regarded as an expansion in n 1/6, like (3.5), then 
we see that two terms beyond the leading one vanish identically. Inclusion of 
one further term, obtained from a moment fitting procedure to be described 
presently, would worsen the correspondence with the directly determined p,,M" 
the asymptotic series (4.3) is evidently best truncated after the first term. We 
note further that the directly determined p~ were calculated using the 
analytic parametrization (I.4.1), which for low u lies slightly above (4.1b). 
Therefore only the first few directly determined pM can be considered 
superior to the asymptotic ones; the best estimate for riM(x) based on (4.3) is 
therefore given by 

riM(x) = X + X M + 0.1216Z(~, x) 

6 

+ ~__, ~p,, M _ ~c,,~ exp ( - xn  1/2) (4.4) 
n = l  

The values of this function for some values of x are given in the second row 
of Table II. The differences with the values derived from (3.10) are quite 
small in spite of the quite different asymptotic behavior for small x: 

n~(x) -- 0.926 + 0.862x 1/z + O(x) (4.5) 

The slightly better agreement with n~t(0)=0.942, compared to (3.10), 
should be considered fortuitous in view of the large uncertainty in the coef- 
ficient a in (4.1). Thus, use of the consistent parametrization (4.1) yields 
some improvement in the complexity of the calculations, but little advantage 
in the numerical results, compared to the analytic parametrization (I.4.1), 

In principle, as we just saw, the requirement that all dM, vanish could 
be used to provide an alternative parametrization of the form, 

QO 

PM(-u) --= Z ak g~(u) exp(-�88 uz) ( 4 . 6 a )  
k-=o 

with 

gk(U) = U 3k+lj2 -- (5 + 6k)-1 u 3k+Sj2 + O(u 3k*gj~) (4.6b) 

where the functions are constructed recursively in such a way that the 
asymptotic series for d_n[gk] vanish identically. The coefficients a k could 
then be determined by fitting the known moments of P ~ ( - u )  using the 
formula 

/ du u s exp(-Tu 2) = 7 -~1/z)~+ 1/2 r(~a + �89 (4.7) 
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However,  f rom the known asymptot ic  series only one term beyond the 
one shown in (4.6b) can be determined, whereas one further term m a y  be put 
equal to zero arbitrarily. This means that only the first three a k could be 
determined even from exact knowledge of PM(--U). In addition, the rapid 
increase of  the coefficients (4.7) with a leads to a rather ill-conditioned 
fitting problem. The results depend very sensitively on whether two or three 
terms are used in (4.6a), where the g~(u) are truncated, and whether the 
factor exp ( - � 88  2) in (2.5) is expanded or retained, leading to 7 = 1 or ~ - -  
in (4.7). A common feature of  all fits is that for a0 compatible  with (4.2), a 1 
comes out negative, with values between - 0 . 1 5  and - 0 . 4 5  depending on the 
details of  the fitting procedure. The sign of  this first correction term was used 
to justify truncating the asymptot ic  series (4.3) after the first term. 

Before concluding this section we note that the rather primitive approx- 
imate expression 

e~(-u) = a 0 u 1/z e x p ( -  �89 2) (4.8) 

with a 0 = 0.928 to normalize to unit current, yields very good values for the 
moments ,  as is seen in Table I I I ;  note, however, that this value for a 0 is 
excluded by the low-u data (4.2). Clearly, the effect of  the correction factor 
(1 -~0u 2 + . . . )  are to a large extent canceled again by terms with a m and a 2 
in (4.6a), which partly explains the problems with the fitting procedure in the 
last paragraph.  

5.  C O N V E R G E N C E  R A T E S  O F  V A R I A T I O N A L  A P R O X I M A T I O N S  

In Ref. 7 various moments  of  the Milne solution PM(u) were determined 
from an approximate  expression 

N - 1  

P (u) = O;(u) + (5.1) 
17--0 

Table III. The Moments ((ua)) = (u a + l ) / (u)  for the Approximation (4.81 to PM(-u), 
Compared to Those of the Numerically Determined PM(-u) Found in I; the Number in 

Parentheses Is the Error in Units of the Last Digit Given. 

ct --1 1 2 3 

App. 0.956 1.434 2.500 5.019 
Num. 0.942(8) 1.454(5) 2.564(17) 5.200(50) 
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with the dUn(u) determined by minimizing the quantity 

~,OO 
D2 -~ Jo du u exp(lu z) IP~(u)l 2 (5.2) 

The integral in (5.2 vanishes identically due to (1.4b) if P~(u) is replaced by 
the exact solution. It was found empirically that D2N approaches a value DZ~ 
close to zero according to 

2 2 D N - D ~  + aN -~ (5.3) 

with ?, ~ 0.48. This behavior can be understood if we consider the "trial 
function" 

N--1 
ff~(u) = O;(u) + ~ d~nO+n(u) (5.4) 

rt=0 

M with d+,  the expansion coefficients of the exact P~. When the d'~n behave 
asymptotically like n tz/3-(1/6)~1 then in follows from the orthonormality of 
the #+(u) that 

--2 (+~o 
AN =- )-0o du u exp(�89 2) IPNM(U) -- pM(u)I2 

= @ (d~n) 2 = O(N -1/3-(1/3)a) (5.5) 
n=N 

Thus we find an upper bound for D 2- given by 

D2N<~ ~ (d~,)z + ~ ~ d+nd+mG, M (5.6a) 
n=N n=N m=N 

with 
0 

Gnm = f  ]Ul exp(�89 2) 0 + . (u )  0+m(u) 
-oo 

(5.6b) 

Now, if one substitutes (2.5), replaces one of the Airy functions by its value 
at u = 0 and rescales the argument in the other one, one obtains the uniform 
order of magnitude estimate 

IGnm] < cst rt-1/3m -2/3 (5.6c) 

Substitution in (5.6a) then leads to the result that the second term is at most 
of the same order as the first one, hence 

o(u -1/~-~/~>~ (5.7) D N = 
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The empirically found exponent 0.48 in (5.3) agrees well with the value 
0.5 found from (5.7) with the value a = ~ that was also found in Section 4. 
Note, however, that (5.7) yields merely a lower bound for the exponent. 
Hence, the data in Ref. 7 exclude a > ~, when we assume that Ds z- has 
already reached its asymptotic region, but not lower values of ct, since the 
actual minimum of the variational procedure might converge faster than the 
trial function (5.4). 

Next we consider the error made in a variational estimate of a quantity 
A [pM(u)] that is a linear functional of pM(u): 

A [pNM(U)] -- A [pM(u)] 

N - - I  oo 

= - (5.8) 
n = 0  t / = N  

When an order of magnitude estimate for A [r is available, the second 
term in (5.8) can be evaluated straightforwardly. To estimate the first term 
we consider 

N--1 +oo 

IdN, - -d~ , ]  2 f U --..N ~ = exp [�89 2 ) IPN(u)M --/~M(u)] 2 

t / = 0  00 

~< f o  u exp(�89 2) ]P~(u) -/~N'(U)l 2 

4 f f u  exp(�89 2 + ]ffN~(U)I 2} 

= O ( N -  1/3 - ( 1 / 3 ) a )  (5.9) 

where we used the Schwartz inequality and the estimate (5.7), which holds 
for P-N M and a fortiori  for P~,  which minimizes the integral (5.2). The result 
(5.9) may be used to estimate the first term in (5.8) via the Schwartz 
inequality for N-dimensional vectors. Thus we find for the case 

A[O+.(u)] = O(n ~) (5.10a) 

the result 

A [P~(u) ] -- A [P~(u) ] = O(N -(1/6)"-~+1/3) (5.10b) 

where both terms in (5.8) give contributions of the same order. The case 
fl = ~ may yield a logarithmic correction from the first term, but we shall see 
presently that the occurrence of such a correction can be probably be 
excluded. 
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Since ~b+,(0) = O(n - ' /3 )  we conclude from (5.10): 

PUN(O) - PU(O) = O ( N  -~'/6~'~) (5.11) 

Since, moreover, the logarithmic derivative of ~+, is of order n ~/6 we expect 
that the range in u of the function PuN(U ) -- P~4(u) should be of order N -  ~/6. 
This scaling relation is, e.g., fulfilled by the first positive zero's of the 
functions PUN(u) in Fig. 2 of Ref. 7. For 

d+,-d+,Iv M = .I du u exp(�89 O+,(u)[PuN(u) - PM(u)] (5.12) 

this leads, with (5.11) and (2.5), to the estimate 

dN n -- da~n = O(n - 1/3N-(1/6)ct - 1 / 3 )  ( 5 . 1 3 )  

This estimate leads again to (5.9) for the sum of the squares, but in addition 
it leads directly to the estimate (5.10b), without logarithmic terms for/3 = �89 
For the error in the Milne length x M, which is proportional to d0 v, (5.13) 
predicts 

XN XM = 0 ( N - 1 / 3  (1/6)a) (5.14) 

The exponent in (5.14) yields ~ - =  0.417 for a = �89 in excellent agreement 
with the value 0.42 found empirically in Ref. 7. In (5.14) we treated the 
quantity exp(lu2)~;(u),  which occurs in (5.12) for n = 0, cf. (I.2.9c), as a 
quantity of order unity. For very high N 1/6 this function should be treated as 
of order u, and there will be crossover to an exponent - � 8 9  = ~ for 

1 
Cg =-  ~ .  

For the density at the wall nM(0) we obtain from (3.2) and (5.10b) for 
1 

nuN(o) - nM(O) = O ( N  1/4) (5.15) 

The agreement with the empirical exponent 0.18 is not as good as in the 
other cases. This may be due to the fact that the range of N values in Ref. 7 
is not large enough to determine small exponents with sufficient precision. 
This guess is supported by the observation that an extrapolation of the data 
of Ref. 7 with the exponent 1/4 yields a value nM(0)= 0.951, which is much 
closer to the value nM(0)= 0.942 • 0.008 found in I than the value 0.914 
found in Ref. 7 from a fit with freely varying exponent. 3 

3 Also, this value, together with the value (u2)(0)= 1.535 found by extrapolation with 
exponent --1/4, fulfills the consistency relation n(O)(u2)(O)=xM better than the 
extapolations with freely varying exponent, yielding a value 11460 rather than 1.453 for the 
left-hand side (the value for x~t found in Ref. 7 is 1.461). 
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To conclude this section we observe that the asymptotic analysis given 
in this paper may be used in two ways to improve and simplify variational 
calculations of the type performed in Ref. 7 and generalizations of 
them. (j4'15~ First one may replace integral expressions such as (3.4a) and 
(3.4b) in Ref. 7 by their asymptotic expressions for large values of their 
indices, and thereby increase the number of terms in trial functions such as 
(5.1) at a much lower cost in calculational effort. Secondly one may perform 
the extrapolations to N =  oo using analytically determined exponents, as we 
just did for riM(0), thus reducing the number of parameters in the fitting 
procedure. Alternatively, one might determine the exponent of the leading 
corrections to expressions of type (5.3) and thus try and fit to a more 
accurate asymptotic expression. 

6. C O N C L U D I N G  R E M A R K S  

The asymptotic analysis of the Pagani coefficients as presented in this 
paper yields a good approximation for the density profile riM(x) for the Milne 
solution. Moreover it allows one to determine the analytic character of 
PM(--U) near u = 0  and of nM(x) near x = 0 .  Finally it explains the 
extrapolation exponents of the variationally determined quantities in Ref. 7, 
and it resolves the discrepancy in the values on riM(0) between I and Ref. 7. 

The infinite derivative of riM(x) at x = 0 predicted in Ref. 9a is also 
found in our work; the convergence rate of DZN found in Ref. 7 can be used 
as an additional argument to exclude the possibility PM(--U)~ a0tt ~/2+3k 

with k4 :0 ,  left open in Section 4. The derivative of nM(x) diverges like 
x -1/~, rather than x -z/3 as suggested in Ref. 9a. We note in this connection 
that the exact solution of the Milne problem for the one-speed neutron 
transport equation also shows an infinite derivative. However, in that case 
the divergence is only logarithmic. (16) 

In principle the same techniques can be used for the Milne problem in 
the presence of an external field and for the Laplace transform of the time- 
dependent Milne problem, both discussed in Ref. 15. With straightforward 
modifications they can be used to supplement the analysis of the albedo 
problem, treated in I, and of the Milne problem for an incompletely 
absorbing wall, discussed in Ref. 14 and in Section 6 of I. In particular the 
analytic properties of the velocity distribution at the wall Pf(u, 0) and the 
density profile nI(x) for the albedo problem are of the same type as for the 
Milne problem when the prescribed distribution of injected particles 
P(u, O)O(u)=f(u)  vanishes in an interval including u = 0, or increases at 
most linearly for small u. However, asymptotic series do not provide 
arbitrarily close approximations of the exact results; whether or not they 
provide useful information must be checked for each case separately. 
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To avoid misunderstanding we should perhaps emphasize once more 
that the techniques developed in this paper do not yield a new method to 
solve the Milne problem. Rather, they yield constraints on the form of the 
solution PM(--U) for small u and, moreover, provide a practical way to 
determine the full solution pM(U, X) and its integral, the density profile riM(X), 
from a given pM(u, 0). The latter may be an ad hoe ansatz or a numerical or 
variational solution. If the input is a numerical solution, the analytical details 
of the density profile will depend on the particular parametrization chosen to 
represent the numerical data. However, as is clear from Table II, the overall 
shape of riM(x) turns out to be surprisingly insensitive to the choice of 
parametrization. 

From a theoretical point of view the parametrization (4.6) is clearly the 
peferable one. However, as long as we have only a few terms in the 
asymptotic series for d~,n[f] available, this method of parametrization 
remains impracticable, since the g~(u) cannot be determined to arbitrary 
order. Once the full asymptotic series for don[f] is available, which would 
require a full asymptotic series to replace the asymptotic approximation 
(2.3a), the expansion (4.6a) would provide the starting point for a new way 
to solve the Milne problem: the parametrization assures that PM(-u) is 
orthogonal to the ~_,(u) asymptotically for high n, and the coefficients a k 
could be determined by requiring orthogonality to ~_~(u) for a few low 
values of n (and normalization to unit current). The basic soundness of this 
approach is assured by the results of Beals and Protopopescu(8); whether it is 
quicker in practice than the methods used in Refs. 2 and 7 remains to be 
seen. 

After the submission of the present paper I received a preprint from Dr. 
Y. S. Mayya, in which he develops asymptotic techniques similar to those in 
the present paper, and obtains the same result for the shape of n(x) near the 
boundary. Dr. Mayya further pointed out to me that a complete asymptotic 
expansion for the d~,[f] could be constructed using the formula in Exercise 
11.7.2 of Ref. 10. 
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